Ионно-плазменное упрочнение вакуумные ионно-плазменные методы упрочнения поверхностей деталей. Ионно-плазменное азотирования как один из современных методов поверхностного упрочнения материалов Оборудование и технология ионного азотирования

Улучшение свойств металла может проходить путем изменения его химического состава. Примером можно назвать азотирование стали – относительно новая технология насыщения поверхностного слоя азотом, которая стала применяться в промышленных масштабах около столетия назад. Рассматриваемая технология была предложена для улучшения некоторых качеств продукции, изготавливаемой из стали. Рассмотрим подробнее то, как проводится насыщение стали азотом.

Назначение азотирования

Многие сравнивают процесс цементирования и азотирования по причине того, что оба предназначены для существенного повышения эксплуатационных качеств детали. Технология внесения азота имеет несколько преимуществ перед цементацией, среди которых отмечают отсутствие необходимости повышения температуры заготовки до значений, при которых проходит пристраивание атомной решетки. Также отмечается тот факт, что технология внесения азота практически не изменяет линейные размеры заготовок, за счет чего ее можно применять после финишной обработки. На многих производственных линиях азотированию подвергают детали, которые прошли закалку и шлифование, практически готовы к выпуску, но нужно улучшить некоторые качества.

Назначение азотирования связано с изменением основных эксплуатационных качеств в процессе нагрева детали в среде, которая характеризуется высокой концентрацией аммиака. За счет подобного воздействия поверхностный слой насыщается азотом, и деталь приобретает следующие эксплуатационные качества:

  1. Существенно повышается износостойкость поверхности за счет возросшего индекса твердости.
  2. Улучшается значение выносливости и сопротивление к росту усталости структуры металла.
  3. Во многих производствах применение азотирования связано с необходимостью придания антикоррозионной стойкости, которая сохраняется при контакте с водой, паром или воздухом с повышенной влажностью.

Вышеприведенная информация определяет то, что результаты азотирования более весомы, чем цементации. Преимущества и недостатки процесса во многом зависят от выбранной технологии. В большинстве случаев переданные эксплуатационные качества сохраняются даже при нагреве заготовки до температуры 600 градусов Цельсия, в случае цементирования поверхностный слой теряет твердость и прочность после нагрева до 225 градусов Цельсия.

Технология процесса азотирования

Во многом процесс азотирования стали превосходит другие методы, предусматривающие изменение химического состава металла. Технология азотирования деталей из стали обладает следующими особенностями:

  1. В большинстве случаев процедура проводится при температуре около 600 градусов Цельсия. Деталь помещается в герметичную муфельную печь из железа, которая помещается в печи.
  2. Рассматривая режимы азотирования, следует учитывать температуру и время выдержки. Для разных сталей эти показатели будут существенно отличаться. Также выбор зависит от того, каких эксплуатационных качеств нужно достигнуть.
  3. В созданный контейнер из металла проводится подача аммиака из баллона. Высокая температура приводит к тому, что аммиак начинает разлагаться, за счет чего начинают выделяться молекулы азота.
  4. Молекулы азота проникают в металл по причине прохождения процесса диффузии. Засчет этого на поверхности активно образуются нитриды, которые характеризуются повышенной устойчивостью к механическому воздействию.
  5. Процедура химико-термического воздействия в данном случае не предусматривает резкое охлаждение. Как правило, печь для азотирования охлаждается вместе с потоком аммиака и деталью, за счет чего поверхность не окисляется. Поэтому рассматриваемая технология подходит для изменения свойств деталей, которые уже прошли финишную обработку.

Классический процесс получения требуемого изделия с проведением азотирования предусматривает несколько этапов:

  1. Подготовительная термическая обработка, которая заключается в закалке и отпуске. За счет перестроения атомной решетки при заданном режиме структура становится более вязкой, повышается прочность. Охлаждение может проходить в воде или масле, иной среде – все зависит от того, насколько качественным должно быть изделие.
  2. Далее выполняется механическая обработка для придания нужной форы и размеров.
  3. В некоторых случаях есть необходимость в защите определенных частей изделия. Защита проводится путем нанесения жидкого стекла или олова слоем толщиной около 0,015 мм. За счет этого на поверхности образуется защитная пленка.
  4. Выполняется азотирование стали по одной из наиболее подходящих методик.
  5. Проводятся работы по финишной механической обработке, снятию защитного слоя.

Получаемый слой после азотирования, который представлен нитридом, составляет от 0,3 до 0,6 мм, за счет чего отпадает необходимость в проведении процедуры закаливания. Как ранее было отмечено, азотирование проводят относительно недавно, но сам процесс преобразования поверхностного слоя металла был уже практически полностью изучен, что позволило существенно повысить эффективность применяемой технологии.

Металлы и сплавы, подвергаемые азотированию

Существуют определенные требования, которые предъявляются к металлам перед проведением рассматриваемой процедуры. Как правило, уделяется внимание концентрации углерода. Виды сталей, подходящих для азотирования, самые различные, главное условие заключается в доле углерода 0,3-0,5%. Лучших результатов достигают при применении легированных сплавов, так как дополнительные примеси способствуют образованию дополнительных твердых нитритов. Примером химической обработки металла назовем насыщение поверхностного слоя сплавов, которые в составе имеют примеси в виде алюминия, хрома и другие. Рассматриваемые сплавы принято называть нитраллоями.

Внесение азота проводится при применении следующих марок стали:

  1. Если на деталь будет оказываться существенное механическое воздействие при эксплуатации, то выбирают марку 38Х2МЮА. В ее состав входит алюминий, который становится причиной снижения деформационной стойкости.
  2. В станкостроении наиболее распространение получили стали 40Х и 40ХФА.
  3. При изготовлении валов, которые часто подвергаются изгибающим нагрузкам применяют марки 38ХГМ и 30ХЗМ.
  4. Если при изготовлении нужно получить высокую точность линейный размеров, к примеру, при создании деталей топливных агрегатов, то используется марка стали 30ХЗМФ1. Для того чтобы существенно повысить прочность поверхности и ее твердость, предварительно проводят легирование кремнем.

При выборе наиболее подходящей марки стали главное соблюдать условие, связанное с процентным содержанием углерода, а также учитывать концентрацию примесей, которые также оказывают существенное воздействие на эксплуатационные свойства металла.

Основные виды азотирования

Выделяют несколько технологий, по которым проводят азотирование стали. В качестве примера приведем следующий список:

  1. Аммиачно-пропановая среда. Газовое азотирование сегодня получило весьма большое распространение. В данном случае смесь представлена сочетанием аммиака и пропана, которые берутся в соотношении 1 к 1. Как показывает практика, газовое азотирование при применении подобной среды требует нагрева до температуры 570 градусов Цельсия и выдержки в течение 3-х часов. Образующийся слой нитридов характеризуется небольшой толщиной, но при этом износостойкость и твердость намного выше, чем при применении классической технологии. Азотирование стальных деталей в данном случае позволяет повысить твердость поверхности металла до 600-1100 HV.
  2. Тлеющий разряд – методика, которая также предусматривает применение азотсодержащей среды. Ее особенность заключается в подключении азотируемых деталей к катоду, в качестве положительного заряда выступает муфель. За счет подключение катода есть возможность ускорить процесс в несколько раз.
  3. Жидкая среда применяется чуть реже, но также характеризуется высокой эффективностью. Примером можно назвать технологию, которая предусматривает использование расплавленного цианистого слоя. Нагрев проводится до температуры 600 градусов, период выдержки от 30 минут до 3-х часов.

В промышленности наибольшее распространение получила газовая среда за счет возможность обработки сразу большой партии.

Каталитическое газовое азотирование

Данная разновидность химической обработки предусматривает создание особой атмосферы в печке. Диссоциированный аммиак проходит предварительную обработку на специальном каталитическом элементе, что существенно повышает количество ионизированных радикалов. Особенности технологии заключаются в нижеприведенных моментах:

  1. Предварительная подготовка аммиака позволяет увеличить долю твердорастворной диффузии, что снижает долю реакционных химических процессов при переходе активного вещества от окружающей среды в железо.
  2. Предусматривает применение специального оборудования, которое обеспечивает наиболее благоприятные условия химической обработки.

Применяется данный метод на протяжении нескольких десятилетий, позволяет изменять свойства не только металлов, но и титановых сплавов. Высокие затраты на установку оборудования и подготовку среды определяют применимость технологии к получению ответственных деталей, которые должны обладать точными размерами и повышенной износостойкостью.

Свойства азотированных металлических поверхностей

Довольно важным является вопрос о том, какая достигается твердость азотированного слоя. При рассмотрении твердости учитывается тип обрабатываемой стали:

  1. Углеродистая может иметь твердость в пределах 200-250HV.
  2. Легированные сплавы после проведения азотирования обретают твердость в пределе 600-800HV.
  3. Нитраллои, которые имеют в составе алюминий, хром и другие металлы, могут получить твердость до 1200HV.

Другие свойства стали также изменяются. К примеру, повышается коррозионная стойкость стали, за счет чего ее можно использовать в агрессивной среде. Сам процесс внесения азота не приводит к появлению дефектов, так как нагрев проводится до температуры, которая не изменяет атомную решетку.

При правильно выбранных составе и режиме нанесения износостойких покрытий эксплуатационные показатели режущего инструмента могут быть существенно улучшены. Однако вследствие неизменности свойств покрытия в пределах одного слоя на границе раздела с инструментальной основой резко изменяются физико-механический и теплофизические свойства (в первую очередь модуль упругости и коэффициент термического расширения), что приводит к образованию в покрытии высоких остаточных напряжений и снижению прочности его адгезионной связи с основой, которая является наиболее важным условием успешной эксплуатации режущего инструмента с покрытием.

Указанное, а также изменения контактных и тепловых процессов при обработке инструментом с покрытием, требуют создания между инструментальной основой и покрытием промежуточного переходного слоя, повышающего сопротивление режущего клина с покрытием, действующим нагрузкам.

Наиболее распространенный метод формирования такого слоя - ионное азотирование. При этом азотированный слой, формируемый перед нанесением покрытия, в зависимости от конкретных условий эксплуатации инструмента должен обладать определенной структурой, толщиной и микротвердостью. На практике такой обработке обычно подвергаются инструменты из быстрорежущих сталей.

Рисунок 4. Принципиальная схема вакуумно-дуговой установки для комбинированной обработки инструмента, включающей в себя ионное азотирование и нанесение покрытий: 1 - мишень; 2 - анод; 3 - экран; 4 - вакуумная камера; 5 - нейтральные атомы; 6 - ионы; 7 - электроны; 8 - обрабатываемые инструменты

Для ионного азотирования и последующего нанесения покрытия целесообразно применение установки на базе вакуумно-дугового разряда, в которой за один технологический цикл без перегрузки обрабатываемых инструментов можно реализовать все этапы комбинированного упрочнения.

Принцип работы такой установки заключается в следующем (рисунок 4).

Мишень испаряется катодными пятнами вакуумной дуги и используется в качестве катода дугового разряда. Специальный экран, расположенный между мишенью и анодом, делит камеру на две зоны, заполненные металлогазовой (слева от экрана) и газовой плазмой (справа). Этот экран непроницаем для микрокапель, нейтральных атомов и ионов металла, эмитируемых катодными пятнами на поверхности мишени. Только электроны проникают через экран, ионизуют по дороге к аноду подаваемый в камеру газ и таким путем образуют не содержащую металлических частиц газовую плазму.

Погруженные в плазму инструменты нагреваются электронами при подаче на них положительного потенциала, а при подаче отрицательного потенциала осуществляется их азотирование. По окончании азотирования экран смещается в сторону, а после того как частицы металлической мишени начинают поступать на поверхность инструмента, осуществляется синтез покрытия.

Осаждение покрытий - весьма энергоемкий процесс, сопровождающийся воздействием высокоэнергетического потока плазмы, особенно в момент ионной бомбардировки. В результате этого характеристики слоя, полученного при ионном азотировании, могут существенно изменяться.

Поэтому при оптимизации процесса комбинированной обработки быстрорежущего инструмента необходимо учитывать факторы не только процесса азотирования, но и последующего процесса нанесения износостойкого покрытия - в первую очередь время нанесения, от которого напрямую зависит толщина покрытия. С одной стороны, ее увеличение благоприятно сказывается на повышении износостойкости контактных площадок инструмента, а с другой - приводит к заметному увеличению количества дефектов в покрытии, снижению прочности сцепления покрытия с инструментальным материалом и уменьшению способности покрытия сопротивляться упругопластическим деформациям.

Важнейшими условиями комбинированной обработки являются температура и продолжительность процесса азотирования, объемная доля азота в газовой смеси с аргоном, а также время последующего процесса нанесения износостойкого покрытия. Другие факторы данного процесса: давление азота, опорное напряжение, ток дуги на катоде - влияют главным образом на характеристики покрытия и должны назначаться такими же, как и в случае осаждения традиционных покрытий.

В зависимости от типа режущего инструмента и условий его последующей эксплуатации при комбинированной обработке ее режимы обычно варьируют в следующих пределах: температура азотирования 420...510 °С; атомная доля азота N 2 в газовой смеси с аргоном 10...80 %; время азотирования 10...70 мин; давление газовой смеси ~ 9,75·10 -1 Па; время нанесения покрытий 40...80 мин.

Практика эксплуатации инструментов из быстрорежущих сталей после комбинированного упрочнения на различных операциях механообработки показывает, что наличие под покрытием азотированного слоя, в котором присутствует хрупкая нитридная зона (?- и?"-фазы), существенно ограничивает эффект от применения комбинированной обработки.

Такая структура формируется при азотировании в атмосфере чистого азота с использованием плазмы вакуумно-дугового разряда. Наличие сравнительно толстой нитридной зоны (> 0,5 мкм) при непрерывном резании (точении и сверлении) не обеспечивает существенного увеличения стойкости инструмента по сравнению с инструментом, имеющим традиционное покрытие, а при прерывистом резании (фрезеровании и долблении) часто ведет к выкрашиванию режущих кромок уже в первые минуты работы инструмента.

Введение аргона в состав азотсодержащей атмосферы при азотировании, предшествующем нанесению покрытия, позволяет управлять фазовым составом формируемого слоя и в зависимости от конкретных условий эксплуатации режущего инструмента и его служебного назначения получать необходимую структуру.

При эксплуатации быстрорежущего инструмента с комбинированной обработкой в условиях прерывистого резания оптимальной структурой азотированного слоя является вязкий и устойчивый к переменным нагрузкам твердый раствор азота в мартенсите, в котором допустимо образование незначительного количества дисперсных нитридов легирующих компонентов.

Указанная структура может быть получена при азотировании в среде, содержащей ~ 30 % N 2 и 70 % Аr.

В случае эксплуатации инструмента в условиях непрерывного резания наибольшей работоспособностью характеризуется слой, состоящий из азотистого мартенсита и специальных нитридов легирующих элементов (W, Mo, Cr, V).

Кроме того, допустимо наличие очень небольшого количества?-фазы. Данная структура повышает сопротивление поверхностного слоя инструмента термическим нагрузкам и может быть сформирована при азотировании в среде, содержащей ~ 60% N 2 и 40% Аг.

Покрытие из (Ti, Al)N, нанесенное на образцы, азотированные в разовых смесях, содержащих, %, 60 N 2 + 40 Ar и 30 N 2 + 70 Ar, отличается удовлетворительной прочностью адгезионной связи. На образцах не наблюдается ни отслаивания покрытия, ни явных трещин, которые были обнаружены на образцах, азотированных при 100 % N 2 .

Создание на контактных площадках режущего инструмента износостойкого комплекса, формируемого путем ионного азотирования с последующим нанесением покрытий в плазме вакуумно-дугового разряда, значительно влияет на интенсивность и характер изнашивания инструмента.

На рисунках 5 и 6 представлены экспериментально полученные профилограммы износа инструмента с покрытием и с комбинированной обработкой при продольном точении и торцевом фрезеровании конструкционной стали 45. Видно, что по сравнению с однослойным покрытием азотирование в сочетании с покрытием практически не изменяет характера изнашивания инструмента, но сильно снижает его интенсивность.

Для рассматриваемых условий эксплуатации отмечается невысокая эффективность инструмента с покрытием без азотирования, как при фрезеровании, так и при точении. Это связано с тем, что очень быстро разрушается покрытие и условия трения по задней поверхности все более приближаются к тем, которые характерны для инструмента без покрытия. А это означает, что увеличивается количество выделяющейся теплоты, возрастает температура вблизи задней поверхности, в результате чего в инструментальном материале начинаются необратимые процессы разупрочнения, которые и приводят к катастрофическому износу.

Исследования природы затупления инструмента с азотированием и покрытием позволяют сделать вывод, что основной вклад в снижение интенсивности изнашивания быстрорежущего инструмента вносит так называемый "краевой эффект", который состоит в следующем.

Уже в первые минуты работы инструмента, как видно из профилограмм его рабочих поверхностей (рисунки 5 и 6), покрытие разрушается на всю свою толщину на участках вблизи режущей кромки. Однако дальнейший рост очагов износа по длине и глубине сдерживается краями площадок контакта, сохраняющими износостойкую комбинацию покрытия и азотированного слоя.

Кроме того, поверхностный азотированный слой, обладающий повышенной твердостью в сочетании с высокой теплостойкостью, отличается более высоким сопротивлением микропластическим деформациям и способствует торможению процессов разупрочнения у задней поверхности.

Рисунок 5. Профилограммы изношенных участков режущих пластин из стали Р6М5 при точении стали 45: а - Р6М5 + (Ti, A1)N; б - Р6М5 + азотирование + (Ti, A1)N; режимы обработки: v = 82 м/мин; S = 0,2 мм/об; / = 1,5 мм (без СОЖ)

Рисунок 6. Профилограммы изношенных участков режущих пластин из стали Р6М5 при торцевом фрезеровании стали 45: а - Р6М5 + (Ti, Al)N; б - Р6М5 + азотирование + (Ti, Al)N; режимы обработки: v = 89 м/мин; S= 0,15 мм/зуб; В = 45 мм;

Производственный опыт показывает, что комбинированная обработка, предусматривающая предварительное азотирование и последующее нанесение покрытий, позволяет увеличить стойкость быстрорежущего инструмента самой широкой номенклатуры до 5 и до 3 раз по сравнению с инструментом соответственно без упрочнения и с традиционным покрытием.

На рисунке 7 показаны зависимости изменения износа во времени h 3 =f(T) режущих пластин из стали Р6М5, прошедших различные виды поверхностного упрочнения, при точении и торцевом фрезеровании стали 45. Видно, что стойкость до катастрофического износа инструмента при точении увеличивается в 2,6 раза, а при фрезеровании - в 2,9 раза по сравнению с инструментом с покрытием, но без азотирования.

Рисунок 7. Зависимость износа по задней поверхности инструмента из стали Р6М5 с различными вариантами поверхностной обработки от времени резания: -- *-- Р6М5 + (Ti, A1)N; --*-- Р6М5 + азотирование + (Ti-Al)N; а - точение стали 45 при v = 82 м/мин; S = 0,2 мм/об; /=1,5 мм; б - фрезерование стали 45: v = 89 м/мин; 5= 0,15 мм/зуб; В = 45 мм; t = 1,5 мм

Ионно-плазменное азотирование (ИПА) – современный упрочняющий метод химико-термической обработки изделий из чугуна, углеродистых, легированных и инструментальных сталей, титановых сплавов, металлокерамики, порошковых материалов. Высокая эффективность технологии достигается путём использования разных газовых сред, влияющих на образование диффузионного слоя различного состава в зависимости от конкретных требований к его глубине и твёрдости поверхности.

Азотирование ионно-плазменным методом актуально для обработки нагруженных деталей, работающих в агрессивных средах, подвергающихся трению и химической коррозии, поэтому широко применяется в машиностроительной отрасли, включая станкостроение, авто- и авиационную промышленность, а также в нефтегазовом, топливно-энергетическом и горнодобывающем секторе, инструментальном и высокоточном производстве.

В процессе поверхностной обработки ионным азотированием улучшаются поверхностные характеристики металлов и эксплуатационная надёжность ответственных деталей машин, двигателей, станков, гидравлики, точной механики и прочих изделий: повышается усталостная и контактная прочность, поверхностная твёрдость и сопротивляемость к трещинообразованию, увеличивается износо-задиростойкость, тепло- и коррозионная стойкость.

Преимущества ионно-плазменного азотирования

Технология ИПА имеет ряд неоспоримых достоинств, основное из которых – стабильное качество обработки с минимальным разбросом свойств. Управляемый процесс диффузионного насыщения газа и нагрева обеспечивает равномерное покрытие высокого качества, заданного фазового состава и структуры.

  • Высокая поверхностная твёрдость азотированных деталей.
  • Отсутствие деформации деталей после обработки и высокая чистота поверхности.
  • Сокращение времени обработки сталей в 3-5 раз, титановых сплавов – в 5-10.
  • Повышение эксплуатации азотированной поверхности в 2-5 раз.
  • Возможность обработки глухих и сквозных отверстий.

Низкотемпературный режим исключает структурные превращения стали, снижает вероятность усталостных разрушений и повреждений, позволяет проводить охлаждение с любой скоростью без риска возникновения мартенсита. Обработка при температурах ниже 500 °С особенно эффективна при упрочнении изделий из инструментальных легированных, быстрорежущих и мартенситно-стареющих сталей: их эксплуатационные свойства повышаются без изменения твёрдости сердцевины (55-60 HRC).

Экологически безопасный метод ионно-плазменного азотирования предотвращает искривление и деформацию деталей при сохранении исходной шероховатости поверхности в пределах Ra=0,63…1,2 мкм – вот почему технология ИПА эффективна в качестве финишной обработки.

Технология процесса

Установки для ИПА работают в разряженной атмосфере при давлении 0,5-10 мбар. В камеру, действующую по принципу катодно-анодной системы, подаётся ионизированная газовая смесь. Между обрабатываемой заготовкой и стенками вакуумной камеры образуется тлеющий импульсный разряд. Созданная под его воздействием активная среда, состоящая из заряженных ионов, атомов и молекул, формирует на поверхности изделия азотированный слой.

Состав насыщающей среды, температура и продолжительность процесса влияют на глубину проникновения нитридов, вызывающих значительное увеличение твёрдости поверхностного слоя изделий.

Ионное азотирование деталей

Ионное азотирование широко применяется в целях упрочнения деталей машин, рабочих инструментов и технологической оснастки неограниченных типоразмеров и форм: зубчатых венцов, коленчатых и распределительных валов, конических и цилиндрических шестерён, экструдеров, муфт сложной геометрической конфигурации, шнеков, режущего и бурового инструмента, оправок, матриц и пуансонов для штамповки, пресс-форм.

Для ряда изделий (шестерён большого диаметра для большегрузных автомобилей, экскаваторов и т. д.) ИПА – единственный способ получения готовой продукции с минимальным процентом брака.

Свойства изделий после упрочнения методом ИПА

Упрочнение зубчатых колёс методом ионного азотирования повышает предел выносливости зубьев при испытаниях на усталость при изгибе до 930 МПа, значительно снижает шумовые характеристики станков и повышает их конкурентоспособность на рынке.

Технология ионно-плазменного азотирования широко применяется для упрочнения поверхностного слоя пресс-форм, используемых при литье под давлением: азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы становится менее турбулентным, что увеличивает срок службы пресс-форм, и обеспечивает высокое качество отливки.

Ионно-плазменное азотирование в 4 и более раз повышает износостойкость штампового и режущего инструмента, изготовленного из сталей марок Р6М5, Р18, Р6М5К5, Р12Ф4К5 и других, с одновременным увеличением режимов резания. Азотированная поверхность инструмента за счёт пониженного коэффициента трения обеспечивает более лёгкий отвод стружки, а также предотвращает её налипание на режущие кромки, что позволяет увеличить подачу и скорость резания.

Компания «Ионмет» оказывает услуги по поверхностному упрочнению конструкционных материалов различных типов деталей и инструмента методом ионно-плазменного азотирования – корректно подобранный режим позволит достигнуть необходимых технических показателей твёрдости и глубины азотированного слоя, обеспечит высокие потребительские свойства продукции.

  • Упрочнение поверхностного слоя мелкомодульных и крупномодульных зубчатых колёс, коленчатых и распределительных валов, направляющих, втулок, гильз, шнеков, цилиндров, пресс-форм, осей и т. д.
  • Повышение стойкости к циклической и пульсирующей нагрузке коленчатых и кулачковых валов, толкателей, клапанов, зубчатых колёс и т. д.
  • Повышение износостойкости и коррозионной стойкости, уменьшение прилипания металла при литье пресс-форм, прессовых и молотовых штампов, пуансонов для глубокой вытяжки, матриц.

Процесс азотирования происходит в современных автоматизированных установках:

  • Ø стола 500 мм, высотой 480 мм;
  • Ø стола 1000 мм, высотой 1400 мм.

Уточнить полную номенклатуру изделий для упрочняющей обработки, а также возможность азотирования крупногабаритных деталей со сложной геометрией можно у специалистов компании «Ионмет». Для определения технических условий азотирования и начала сотрудничества отправьте нам чертёж, укажите марки стали и примерную технологию изготовления деталей.

ИОННО-ПЛАЗМЕННОЕ АЗОТИРОВАНИЯ КАК ОДИН ИЗ СОВРЕМЕННЫХ МЕТОДОВ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ МАТЕРИАЛОВ

, , студенты;

, ст. преподаватель

Повышение качества металла и его механических свойств – это основной путь увеличения долговечности деталей и один из главных источников экономии сталей и сплавов. Повышение качества и долговечности изделий производят за счет рационального выбора материалов и методов упрочнения при достижении высокой технико-экономической эффективности. Существует много различных методов поверхностного упрочнения – закалка токами высокой частоты, пластическая деформация, химико-термическая обработка (ХТО), лазерная и ионно-плазменная обработка.

Традиционно применяемый в промышленности процесс газового азотирования , как один из видов ХТО, - это процесс диффузионного насыщения поверхностного слоя стали азотом. Азотирование с большим эффектом может быть использовано для повышения износостойкости, твердости, усталостной прочности, коррозионной и кавитационной стойкости различных материалов (конструкционных сталей, жаропрочных сталей и сплавов, немагнитных сталей и др.)., обладает рядом неоспоримых достоинств, таких как: относительная простота процесса, возможность использования универсального оборудования и приспособлений для укладки деталей, возможность азотирования деталей любых размеров и формы. Вместе с тем газовое азотирование имеет и целый ряд недостатков: большая длительность процесса (20-30 ч.) даже при азотировании на небольшие толщины слоя (0,2-0,3 мм); процесс трудно поддается автоматизации; затруднительна местная защита поверхностей, не подлежащих азотированию; нанесение различных гальванических покрытий (меднение, лужение, никелирование и др.) требует организации специального производства.

Одним из направлений интенсификации производства является разработка и внедрение на промышленных предприятиях новых перспективных процессов и технологий, позволяющих повысить качество выпускаемой продукции, сократить рабочие затраты на ее выпуск, повысить производительность труда и улучшить санитарно-гигиенические условия на производстве.

Такой прогрессивной технологией является ионно-плазменное азотирование (ИПА) - разновидность химико-термической обработки деталей машин, инструмента, штамповой и литьевой оснастки, обеспечивающая диффузионное насыщение поверхностного слоя стали и чугуна азотом (азотом и углеродом) в азотно-водородной плазме при температуре
400-600ºС, титана и титановых сплавов при температуре 800-950 ºС в азотосодержащей плазме. Этот процесс в настоящее время нашел широкое распространение во всех экономически развитых странах: США, Германии, Швейцарии, Японии, Англии, Франции.

Во многих случаях ионное азотирование является более целесообразным, чем газовое. К числу достоинств ИПА в плазме тлеющего разряда следует отнести следующие: возможность управления процессом насыщения, которая обеспечивает получение покрытия высокого качества, заданного фазового состава и строения; обеспечение абсолютно одинаковой активности газовой среды всей поверхности детали, охваченной тлеющим разрядом, это в конечном итоге обеспечивает получение равномерного по толщине азотированного слоя; снижение трудоемкости местной защиты поверхностей, не подлежащих азотированию, которая производится металлическими экранами; резкое сокращение длительности азотирования деталей (в 2-2,5 раза); снижение деформации деталей. Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объёмной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред.

Сущность процесса ионного азотирования заключается в следующем. В замкнутом вакуумированном пространстве между деталью (катодом) и кожухом печи (анодом) возбуждается тлеющий разряд. Азотирование проводится при аномальном тлеющем разряде, при высоком напряжении порядка Вт. Современные установки обеспечивают устойчивость тлеющего разряда на границе перехода его в нормальный и дуговой. Принцип действия дугогасящих устройств основан на кратковременном отключении установки при загорании вольтовой дуги.

Азотирование повышает коррозионную стойкость деталей из углеродистых и малолегированных сталей. Детали, азотированные для повышения поверхностной прочности и износостойкости, одновременно приобретают свойства против коррозии в среде пара, в водопроводной воде, в растворах щелочей, в неочищенном масле, бензине, загрязненной атмосфере. Ионное азотирование существенно повышает твердость деталей, что обусловлено высокодисперсными выделениями нитридов, количество и дисперсность которых влияет на достигаемую твердость. Азотированием повышают предел усталости. Это объясняется, во-первых, повышением прочности поверхности, во-вторых, возникновением в ней остаточных сжимающих напряжений.

Преимущества ионного азотирования наиболее полно реализуются при крупносерийном и массовом производстве, при упрочнении больших партий однотипных деталей. Варьируя состав газа, давление, температуру и время выдержки можно получать слои заданной структуры и фазового состава. Применение ионного азотирования даёт технический, экономический и социальный эффекты.